Thursday, February 16, 2012

3.11

Use 5-Digit arithmetic with chopping to determine the roots of the following Eqs (3.12) and (3.13)


3.12: 
x = (-b± sqrt(b^2-4ac))/2a


3.13
x=-2c/(b± sqrt(b^2-4ac))


x^2 - 5000.002x+10


Compute percent relative errors for your results


a = chop(1,5);
b = chop(-5000.002,5);
c = chop(10,5);

  %3.12
  
  x1 = chop((-b + sqrt(b^2 - 4*a*c))/(2*a),5);
  x2 = chop((-b - sqrt(b^2 - 4*a*c))/(2*a),5);
  
  
  %3.13
  
  x1b = chop((-2*c)/(b + sqrt(b^2 - 4*a*c)),5) ;  
  x2b = chop((-2*c)/(b - sqrt(b^2 - 4*a*c)),5) ; 
  

  display(x1);
  display(x1b);
  display(x2);
  display(x2b);
  
  percenterror = ((5000 - x1)/5000) *100;
  percenterrorb = ((5000 - x1b)/5000) *100;
  percenterror2 = ((.002 - x2)/.002) *100;
  percenterror2b = ((.002 - x2b)/.002) *100;


The roots are 5000 and .002

No comments:

Post a Comment