G(s) = C(s)/N(s) = s^3 +12.5 *s^2 + 50.5 *s +66/ s^4 + 19*s^3 +122*s^2 +296 * s +192
where G(s) = system gain, C(s) = system output, N(s) = system input, and s = Laplace transform complex frequency. Use a numerical technique to find the roots of the numerator and denominator and factor these into the form
G(s) = (s + a_1) (s + a_2) (s + a_3) / (s + b_1)(s + b_2)(s + b_3)(s + b_4)
where a_i and b_i = the roots of the numerator and denominator, respectively.
%roots(s^3 +12.5 *s^2 + 50.5 *s +66)
x = roots([1 12.5 50.5 66]);
%roots(s^4 + 19*s^3 +122*s^2 +296 * s +192)
y = roots([1 19 122 296 192]);
This results in
x =
-5.5000
-4.0000
-3.0000
EDU>> y
y =
-8.0000
-6.0000
-4.0000
-1.0000
And so,
G(s) = (s + 5.5) (s + 4) (s + 3) / (s + 8) (s + 6) (s + 4) (s + 1)
No comments:
Post a Comment